
Representations of symmetry operations 

 

Triphenyl phosphine has three hexagonal planar rings attached to a central phosphorus atom so that 

the molecule has 3-fold symmetry about a vertical axis passing through the phosphorous atom.    

 
Triphenyl phosphine 

The molecule has six sets of three equivalent carbon atoms and five sets of three equivalent hydrogen 

atoms.   Looking again at just the carbon atoms nearest to the phosphorus atom, numbering them 1, 2 

and 3 as in the image above, we noted that an application of the 3-fold generator operation c 

redistributed the three atoms as follows 

(
1
2
3
) 

𝑐
→  (

3
1
2
) 

This redistribution of the atoms from their original positions is faithfully mimicked by a permutation 

matrix as follows 

(
3
1
2
) = (

0 0 1
1 0 0
0 1 0

) (
1
2
3
) 

In this way the following three permutation matrices are obtained 

𝑃(𝐸 ) = (
1 0 0
0 1 0
0 0 1

)          𝑃(𝑐 ) = (
0 0 1
1 0 0
0 1 0

)          𝑃(𝑐2 ) = (
0 1 0
0 0 1
1 0 0

)   

Permutation matrices 𝑃(𝑥 ) mimic the behaviour of operations 𝑥 and must multiply out in same way 

as the operations themselves.   For example,  𝑐𝑐2  = 𝐸 and so 𝑃(𝑐 )𝑃(𝑐2 ) = 𝑃(𝐸)in the matrix 

multiplication 

(
0 0 1
1 0 0
0 1 0

)(
0 1 0
0 0 1
1 0 0

) = (
1 0 0
0 1 0
0 0 1

) 

Only three atoms have so far been considered but the molecule has 11 ×  3 +1 atoms and its 

symmetry operations would need to be described by a 34 x 34 square matrix.   Fortunately, the atoms 

in each equivalence set are only exchanged with others of their equivalence set and the permutation 

matrix consists of eleven 3 x 3 submatrices positioned on the leading diagonal together with a single 1 

to represent the central atom. 



Point group representation matrices can be reduced to irreducible representations that are 

characteristic of the group being represented.   One way of doing this is to sum up the elements on the 

leading diagonals of each of the permutation matrices to deduce the character for each matrix.   In the 

case of the three equivalent atoms above this gives 𝐶ℎ(𝐸 ) = 3, 𝐶ℎ(𝑐 ) = 0 and 𝐶ℎ(𝑐2 ) = 0.   Group 

theory requires that the characters of the irreps add up to that of the larger representation and this 

allows the irreps to be deduced.   Fortunately, this procedure is never required in practice because the 

procedure described above always shows that 𝑛 equivalent atoms in an 𝑛 -fold cyclic group always 

produces one of each irrep of the group.   All that is required is the list below of the possible irreps for 

each order of rotation 

 

 

 

 

 

All that needs to be done is to find the order of the rotation then assign its irreps according to the table 

above.   Cyclic group irrep symbols are 1 dimensional so 3 x 3 matrices like the those above reduce to 

three 1 x 1 irreps ie three numbers.   Matrices from one equivalence set reduce to irreps 

𝐴, 𝐸+1, 𝐸−1and since the other 10 behave in the same way a total irrep count for the whole molecule 

will be 11(𝐴, 𝐸+1, 𝐸−1) + 𝐴.   Group theory requires that the irreducible representations of each 

equivalence set contain the most symmetrical irrep once and only once so a single atom always has 

the most symmetrical irrep.   The extension to higher order cyclic groups is simple and 

straightforward. 

Dihedral symmetry groups 

The trisoxalato iron III molecule ion shown below was used to illustrate symmetry operations in 

dihedral goups 

 
the trisoxalato iron III molecule ion 𝐹𝑒(𝐶2𝑂4)3 

This molecule belongs to the 𝐶3 symmetry group but also has 2-fold symmetry about the y axis and so 

belongs to the higher order dihedral symmetry group 𝐷3.   Atoms 1,2 and 3 are exchanged by 𝐶3 

symmetry operations in the same way as in the cyclic example above.    A second set of atoms 

numbered 4,5 and 6 are also exchanged between themselves during these operations.   When this 

Cyclic group irreps 

𝑛 Irreps 𝑛 Irreps 

1 𝐴 2 𝐴, 𝐵 

3 𝐴, 𝐸+1, 𝐸−1 4 𝐴, 𝐵, 𝐸+1, 𝐸−1  
5 𝐴, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2 6 𝐴, 𝐵, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2  

7 𝐴, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2, 𝐸+3, 𝐸−3 8 𝐴, 𝐵, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2, 𝐸+3, 𝐸−3  

 ……………………   

∞ 𝐴, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2, . . , 𝐸∞   



molecule is considered to have 𝐶3 symmetry the matrix representations of these two sets of atoms will 

have irreps  2(𝐴, 𝐸+1, 𝐸−1).   The matrix itself 𝑃(𝑐) is just two 3 x 3 matrices on the leading diagonal 

of a 6 x 6 matrix 

(

  
 

3
1
2
6
4
5)

  
 
= 

(

  
 

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0)

  
 

(

  
 

1
2
3
4
5
6)

  
 

 

 

A 2-fold rotation u about the horizontal y axis exchanges the two sets of atoms, creating a new 

equivalence set of 6 atoms from the two sets of 3 equivalent atoms with matrix 𝑃(𝑢)  

  

(

  
 

4
6
5
1
3
2)

  
 
=  

(

  
 

0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0)

  
 
 

(

  
 

1
2
3
4
5
6)

  
 

 

 

It is worth checking that the matrices multiply out in the same way as the operations. 

Operation 𝑢𝑐 = 𝑢1 so we expect 𝑃(𝑢)𝑃(𝑐) =  𝑃(𝑢1) 

 

(

  
 

0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0)

  
 
 

(

  
 

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0)

  
 
=

(

  
 

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0)

  
 

 

A quick check of the image above shows that this is transformation 𝑢1 

(

  
 

6
5
4
3
2
1)

  
 
=   

(

  
 

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0)

  
 

(

  
 

1
2
3
4
5
6)

  
 

 

It is already clear that, when considered as a 3-fold cyclic group, the six equivalent atoms consist of 

two sets of 3 equivalent atoms with irreps 2(𝐴 + 𝐸+1 + 𝐸−1).   An additional 2-fold rotational 

symmetry at right angles to the main axis merges conjugate pairs of E irreps to form a single two 

dimensional representation.   At the same time A and B irreps are split into two distinct one 

dimensional irreps with subscripts 1 and 2.   These changes produce the collection of the irreducible 

representations shown below.   The cyclic irreps therefore become 𝐴1 + 𝐴2 + 2𝐸1 in a dihedral 

environment because the most symmetrical irrep 𝐴1must occur once and only once so the second 

subscript has to be 2. 



 

 

 

 

 

 

 

Representations for non-rotational group molecules 

Non-rotational groups may be derived from rotational groups in two ways: either by combining 

rotational operations with mirror reflection or as a direct product of the rotational group with space 

inversion (i).   These possibilities are shown in the table of Laue classes below with rotational group 

G on the left semi-direct product groups 𝐺̅ in the middle and direct product groups 𝐺𝑖 on the right.   

One row of the table contains the groups of one Laue class 
 

Laue classes of point groups 

Partition System 𝐺 𝐺̅ 𝐺𝑖 

[1,1,1] Triclinic 𝐶1   𝐶𝑖 

 Monoclinic 𝐶2  𝐶𝑠 𝐶2ℎ 

 Orthogonal 𝐷2 𝐶2𝑣  𝐷2ℎ 

[2,1] Trigonal 𝐶3   𝑆6 

  𝐷3 𝐶3𝑣  𝐷3𝑑 

 Tetragonal 𝐶4  𝑆4 𝐶4ℎ 

  𝐷4 𝐶4𝑣 𝐷2𝑑 𝐷4ℎ 

 Pentagonal 𝐶5   𝑆10 

  𝐷5 𝐶5𝑣  𝐷5𝑑 

 Hexagonal 𝐶6  𝐶3ℎ 𝐶6ℎ 

  𝐷6 𝐶6𝑣 𝐷3ℎ 𝐷6ℎ 

 Heptagonal 𝐶7   𝑆14 

  𝐷7 𝐶7𝑣  𝐷7𝑑 

 Octagonal 𝐶8   𝑆8 𝐶8ℎ 

  𝐷8 𝐶8𝑣 𝐷4𝑑 𝐷8ℎ 

  …………………. 

 Infinity 𝐶∞   𝐶∞ℎ 

  𝐷∞ 𝐶∞𝑣  𝐷∞ℎ 

[3] Tetrahedral 𝑇   𝑇ℎ 

 Octahedral 𝑂  𝑇𝑑 𝑂ℎ 

 Icosahedral 𝐼   𝐼ℎ 

 

𝑛 Dihedral irreps n Dihedral irreps 

2 𝐴1, 𝐴2, 𝐵1, 𝐵2  3 𝐴1, 𝐴2, 𝐸1  

4 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐸1 5 𝐴1, 𝐴2, 𝐸1, 𝐸2  

6 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐸1, 𝐸2  7 𝐴1, 𝐴2, 𝐸1, 𝐸2, 𝐸3  

8 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐸1, 𝐸2, 𝐸3   

 and so on until   

∞ 𝐴1, 𝐴2, 𝐸1, 𝐸2, 𝐸3, 𝐸4, . . , 𝐸∞   



Point groups in a Laue class, other than the centrosymmetric group, are distinct manifestations of a 

single abstract group and, since irreps are characteristic of the abstract group rather than the individual 

point group, they all have the same irreducible representations.  The centrosymmetric group is the 

direct product of any other member of a Laue class with a 2-fold cyclic group representing space 

inversion.   Its irreps are also direct products of the class irreps, producing two sets of irreps 

distinguished by g and u subscripts. 

Take the ammonia molecule with point group symmetry 𝐶3𝑣 as an example.   This group belongs to 

Laue class 𝐷3 and has the irreps for this group shown above.   In point group 𝐶3 the three 

equivalent hydrogen atoms have irreps 𝐴, 𝐸+1, 𝐸−1and the nitrogen atom contributes irrep 𝐴.   

Upgrading this to the dihedral class gives irreps 𝐴1 + 𝐸1 for the hydrogen atoms and 𝐴1 for the 

nitrogen atom so the irrep total for the molecule is 2𝐴1 + 𝐸1 

Staggered ethane belongs to point group 𝐷3𝑑 of order 12 and is the centrosymmetric group of the 

𝐷3 Laue class.   It has two sets of three hydrogen atoms attached to two carbon atoms that can 

be imagined to be placed in the z axis.  When considered as a 𝐶3 molecule the two sets of 

three equivalent hydrogen atoms contribute irreps 2(𝐴, 𝐸+1, 𝐸−1) and the carbon atoms 

contribute 2𝐴 because they are isolated atoms and both have the most symmetric irrep.  Looking at 

this molecule in a 𝐷3 point group the two sets of hydrogen atoms merge to become a single set 

of six equivalent atoms with irreps 𝐴1 + 𝐴2 + 2𝐸1, following the reasoning in the 𝐷3 example 

above.   The two isolated carbon atoms become two equivalent atoms in 𝐷3 and their irreps in 

this group become 𝐴1 + 𝐴2.   Finally, the dihedral irreps acquire g and u subscripts and a simple 

rule helps this process:  if an atom is positioned at the centre of symmetry it contributes the most 

symmetrical irrep of the group otherwise there must be an equal number of g and u subscripts for each 

equivalence set.   So, starting with irreps 𝐴1 + 𝐴2 + 2𝐸1we have to add subscript g to the 𝐴1 irrep to 

maintain the most symmetric irrep and, in order to then keep the numbers of subscripts equal we 

obtain 𝐴1𝑔 + 𝐴2𝑢 + 𝐸1𝑔 + 𝐸1𝑢.   Similarly, the carbon atom irreps become 𝐴1𝑔 + 𝐴2𝑢  and the total 

for the molecule becomes 

2𝐴1𝑔 + 2𝐴2𝑢 + 𝐸1𝑔 + 𝐸1𝑢 

This completes one example for each of the 𝐷3 Laue class groups.   Irreps can always be deduced 

by inspection and the laborious use of the “Great Orthogonality Theorem” is completely 

unnecessary simply to find irreps. 


