
 Non-rotational point groups 

 

Schoenflies notation defines the following three improper symmetry operations in addition to the 

rotational and identity symmetry operations discussed earlier: 

Space inversion      𝑖    -  equivalent to three mirror planes at right angles to each other 

Mirror reflection σ   -  mirror reflection in a plane  

Rotation reflection 𝑆𝑛 -  an n-fold rotation followed by reflection in the horizontal plane 

In the Schoenflies system, non-rotational groups are based on underlying rotational groups so, for 

example, a cyclic group 𝐶𝑛 of order n can be combined with a horizontal mirror plane to give point 

group 𝐶𝑛ℎ or with a vertical mirror plane to give point group 𝐶𝑛𝑣 both of order 2𝑛.   Cyclic sub 

groups 𝐶𝑛 also occur in non-rotational groups 𝑆2𝑛 where the defining operation is a 2n fold rotation-

reflection about the z axis but the principle remains the same: the order of the non-rotational group is 

twice that of the rotational subgroup.   Except for the  𝑆𝑛 series, Schoenflies notation always expands 

from a symbol for the underlying rotational group, adding a subscript to the rotational group symbol 

and so non-rotational groups derived from cyclic and dihedral rotational groups appear as follows 

Rotational group 

of order 𝑛 

Non-rotational group  

of order 2𝑛 

𝐶1 𝐶𝑠,   𝐶𝑖   

𝐶𝑛 𝐶𝑛ℎ,  𝐶𝑛𝑣 , 𝑆2𝑛   

𝐷𝑛 𝐷𝑛ℎ, 𝐷𝑛𝑑   

𝑇 𝑇𝑑 , 𝑇𝑖 

𝑂 𝑂𝑖 

 

The fact that Schoenflies group symbols are derived from their rotational subgroup symbols provides 

a easy way of assigning a molecule to the non-rotational group describing its symmetry.   Every non-

rotational point group contains a rotational sub-group of exactly half its order so, taking the simplest 

examples, point groups 𝐶𝑖 and 𝐶𝑠  of order 2 both contain rotational group 𝐶1 of order 1.   More 

generally, a specific cyclic rotational group only occurs as a sub-group within a non-rotational group 

in a very limited number of cases.   The table below shows that, given a specific rotational cyclic 

group, there are only ever three non-rotational groups of twice its order 

Rotational group 𝐶1   𝐶2   𝐶3   𝐶4   𝐶5   𝐶6   ……. 𝐶∞   

Centrosymmetric 𝐶𝑖   𝐶2ℎ   𝑆6   𝐶4ℎ   𝑆10   𝐶6ℎ     

Mirror symmetry (h) 𝐶𝑠   𝑆4   𝐶3ℎ    𝑆8    𝐶5ℎ   𝑆12     

Mirror symmetry (v)  𝐶2𝑣   𝐶3𝑣   𝐶4𝑣   𝐶5𝑣   𝐶6𝑣   ……. 𝐶∞𝑣   

 

This information is very useful in assigning molecules to point groups.   Once a rotational subgroup is 

deduced there can never be more than three possible non-rotational higher order groups and the choice 

is usually obvious.   Using the table above it is easy to deduce a non-rotational point group from the 

rotational group.   If, for example, a molecule has visible 4-fold cyclic rotational symmetry about the 

main axis and no other rotational axis it could be a subgroup of point group 𝐶4ℎ, 𝑆8  or 𝐶4𝑣 but no 

other group.   One of these has a centre of symmetry, one has 4 vertical mirrors while the other one 

has an 8-fold rotation-reflection axis.   Notice that symbols in the first two rows alternate between the 

𝐶𝑛ℎ and 𝑆𝑛 series because these two Schoenflies series alternate between centred and non-centred 

groups.  This is the core problem with the Schoenflies approach:  it was derived from the observation 



of visible crystal shapes (eg prisms and anti-prisms) rather than point group elements.  It relates to the 

visible outer rotational shape not to the abstract group for that specific point group. 

An n-fold cyclic group with n 2-fold rotational axes intersecting at the molecular centre suggests a 

dihedral rotational group 𝐷𝑛  but this only occurs as a subgroup in two possible non-rotational groups 

as shown in the table below.   Centred and non-centred examples in this case alternate between 𝐷𝑛ℎ 

and 𝐷𝑛𝑑  groups because of the Schoenflies notation.   Once again, a centre of symmetry is obvious 

and its presence or absence dictates the choice of non-rotational group. 

 𝐷2   𝐷3   𝐷4   𝐷5   𝐷6   ……. 𝐷∞   

Centrosymmetric 𝐷2ℎ   𝐷3𝑑   𝐷4ℎ   𝐷5𝑑   𝐷6ℎ   …….   𝐷∞ℎ   

Mirror symmetry 𝐷2𝑑   𝐷3ℎ   𝐷4𝑑   𝐷5ℎ   𝐷6𝑑   …….  

 

Spherical molecules have three rotational groups:  those of the tetrahedron (T), the octahedron (O) and 

icosahedron (I).   As in the previous examples, Schoenflies notation is based on the external shapes of 

polyhedra so the notation places great emphasis on the visible rotational subgroups of non-rotational 

point group objects.   Tetrahedral or octahedral rotational subgroups only occur in the limited number 

of point groups below and the deduction is trivial 

 𝑇 𝑂 

Centrosymmetric  𝑇𝑑  

Mirror symmetry  𝑇𝑖  𝑂𝑖 

 

Every non-rotational point group contains a rotational subgroup of exactly half its order or conversely 

the non-rotational group is twice the order of its rotational subgroup.   This is important because once 

a rotational group is known there are very few larger groups that can contain it. 

In summary, all molecules can be assigned to a molecular point group even if that group is simply C1.   

The steps involved in assigning a molecule are straightforward 

• Assign the molecule to its highest order rotational group even if some non-rotational 

symmetry appears to be possible.   If it has just rotational symmetry the job is finished. 

• In the more likely situation that the rotational group is a subgroup of a larger group there is 

always a limited number of possible non-rotational groups.   This larger group must be of 

twice the order of the rotational group and there are never more than the 2 or 3 supergroups 

shown in the tables above. 

 

Laue classes of point groups 

The basic ad-hoc nature of the Schoenflies approach was derived to describe the external forms of 

crystals and is not that helpful in molecular spectroscopic applications.   Deriving the system from 

rotational subgroups combined with mirror reflections neglects major differences between the non-

rotational groups themselves.   When point groups are displayed in the Laue classes shown below the 

relationship between members of a class (rows of the table) is sufficient to overcome the deficiencies 

of the notation itself 

 

 



Laue classes of point groups - Schoenflies 

Partition System 𝐺 𝐺̅ 𝐺𝑖 

[1,1,1] Triclinic 𝐶1   𝐶𝑖 

 Monoclinic 𝐶2  𝐶𝑠 𝐶2ℎ 

 Orthogonal 𝐷2 𝐶2𝑣  𝐷2ℎ 

[2,1] Trigonal 𝐶3   𝑆6 

  𝐷3 𝐶3𝑣  𝐷3𝑑 

 Tetragonal 𝐶4  𝑆4 𝐶4ℎ 

  𝐷4 𝐶4𝑣 𝐷2𝑑 𝐷4ℎ 

 Pentagonal 𝐶5   𝑆10 

  𝐷5 𝐶5𝑣  𝐷5𝑑 

 Hexagonal 𝐶6  𝐶3ℎ 𝐶6ℎ 

  𝐷6 𝐶6𝑣 𝐷3ℎ 𝐷6ℎ 

 Heptagonal 𝐶7   𝑆14 

  𝐷7 𝐶7𝑣  𝐷7𝑑 

 Octagonal 𝐶8   𝑆8 𝐶8ℎ 

  𝐷8 𝐶8𝑣 𝐷4𝑑 𝐷8ℎ 

  …………………. 

 Infinity 𝐶∞   𝐶∞ℎ 

  𝐷∞ 𝐶∞𝑣  𝐷∞ℎ 

[3] Tetrahedral 𝑇   𝑇ℎ 

 Octahedral 𝑂  𝑇𝑑 𝑂ℎ 

 Icosahedral 𝐼   𝐼ℎ 

 

Taking the 𝐶3 group of order 3 again as an example, another group with this subgroup must be 

of order 6 because it is always index-2 to the larger group.   The most obvious example is the 

3-fold dihedral group 𝐷3 with following multiplication table 

3-fold dihedral operation table 

𝐷3 𝐸 𝑐 𝑐2 𝑢 𝑢1 𝑢2 

𝐸 𝐸 𝑐 𝑐2 𝑢 𝑢1 𝑢2 

𝑐 𝑐 𝑐2 𝐸 𝑢2 𝑢 𝑢1 

𝑐2 𝑐2 𝐸 𝑐 𝑢1 𝑢2 𝑢 

𝑢 𝑢 𝑢1 𝑢2 𝐸 c 𝑐2 

𝑢1 𝑢1 𝑢2 𝑢 𝑐2 𝐸 c 

𝑢2 𝑢2 𝑢 𝑢1 c 𝑐2 𝐸 

 

It is easy to read the order of a point group from the Laue class table and it is obvious that the 

only non-rotational groups of order 6 are 𝑆6, 𝐶3ℎ and 𝐶3𝑣.   Point groups in cyclic and dihedral 

classes have orders n and 2n respectively, except for the centrosymmetric group of orders 2n 

and 4n.   A multiplication table for the operations of the 𝐶3𝑣 has the form shown below and if this is 

compared with the 𝐷3 rotational group table shown above the similarities become obvious.   Letter 𝑢 

representing a 2-fold horizontal rotation is replaced by letter 𝑚 representing a mirror reflection but the 

form of the table is identical. 

 



𝐶3𝑣 symmetry operation table 

 𝐸 𝑐 𝑐2 𝑚 𝑚1 𝑚2 

𝐸 𝐸 𝑐 𝑐2 𝑚 𝑚1 𝑢2 

𝑐 𝑐 𝑐2 𝐸 𝑚2 𝑚 𝑚1 

𝑐2 𝑐2 𝐸 𝑐 𝑚1 𝑚2 𝑚 

𝑚 𝑚 𝑚1 𝑚2 𝐸 c 𝑐2 

𝑚1 𝑚1 𝑚2 𝑚 𝑐2 𝐸 c 

𝑚2 𝑚2 𝑚 𝑢1 c 𝑐2 𝐸 

 

𝐷3 and 𝐶3𝑣 are representations of the same abstract group and appear in the same Laue class of the 

Laue table above.   Group 𝐶3𝑣 contains three non-rotational operations 𝑚, 𝑚1 and 𝑚2 that may be 

obtained from rotational operations 𝑢, 𝑢1 and 𝑢2 through combination with central inversion 𝑖 

as follows  𝑚 = 𝑖𝑢,   𝑚1 =  𝑖𝑢1,    𝑚2 = 𝑖𝑢2.     

Symmetry group 𝐶3ℎ of order 6 is a quite different structure and, in spite of  the Schoenflies symbol, 

is actually an hexagonal molecule isomorphic to group 𝐶6.    Again, the three operations not in the 

subgroup are combined with space inversion to give a transformation that Schoenflies called 

rotation inversion. 

𝐶3ℎ symmetry operation table 

 𝐸 𝑖𝑐 𝑐2 𝑖𝑐3 𝑐4 𝑖𝑐5 

𝐸 𝐸 𝑖𝑐 𝑐2 𝑖𝑐3 𝑐4 𝑖𝑐5 

𝑖𝑐 𝑖𝑐 𝑐2 𝑖𝑐3 𝑐4 𝑖𝑐5 𝐸 

𝑐2 𝑐2 𝑖𝑐3 𝑐4 𝑖𝑐5 𝐸 𝑖𝑐 

𝑖𝑐3 𝑖𝑐3 𝑐4
 𝑖𝑐5 𝐸 𝑖𝑐 𝑐2 

𝑐4 𝑐4 𝑖𝑐5 𝐸 𝑖𝑐 𝑐2 𝑖𝑐3 

𝑖𝑐5 𝑖𝑐5 𝐸 𝑖𝑐 𝑐2 𝑖𝑐3 𝑐4 

 

Finally, the centrosymmetric group is a simple direct product of the rotational group 𝐶3 with space 

inversion.   Obviously, the product of 𝐸 and 𝑖 is 𝑖 and this means that space inversion is an operation 

in the resulting group.   The table for this group is as follows 

 

𝑆6 symmetry operation table 

 𝐸 𝑐 𝑐2 𝑖 𝑖𝑐 𝑖𝑐2 

𝐸 𝐸 𝑐 𝑐2 𝑖 𝑖𝑐 𝑖𝑐2 

𝑐 𝑐 𝑐2 𝐸 𝑖𝑐 𝑖𝑐2 𝑖 
𝑐2 𝑐2 𝐸 𝑐 𝑖𝑐2 𝑖 𝑖𝑐 

𝑖 𝑖 𝑖𝑐 𝑖𝑐2 𝐸 𝑐 𝑐2 

𝑖𝑐 𝑖𝑐 𝑖𝑐2 𝑖 𝑐 𝑐2 𝐸 

𝑖𝑐2 𝑖𝑐2 𝑖 𝑖𝑐 𝑐2 𝐸 𝑐 

 

There is clearly a problem with the Schoenflies system in that the point group symbols are not clearly 

related to the operations in the group.   Molecules with 𝐷𝑛ℎ and 𝐷𝑛𝑑 symmetry for example alternate 

between the centrosymmetric forms and mirror image forms that give the molecules their 

characteristic behaviours  

 

 



Some examples of point group deduction 

A few examples demonstrate the use of subgroups in deductions starting with the following molecules 

that have 3-fold cyclic symmetry 

 

                            Cobalt tetracarbonyl hydride             Boric acid                               18-crown-6          

A cobalt tetracarbonyl hydride molecule has an obvious 3-fold axis so belongs to point group 𝐶3.  It 

has equally obvious mirror planes of symmetry so the 𝐶3 group appears as a subgroup of larger non-

rotational group of order 6.   The possibilities for a non-rotational group with a 𝐶3 are shown in the 

table above to be 𝑆6, 𝐶3ℎ and 𝐶3𝑣 but the first of these is centrosymmetric and cobalt tetracarbonyl 

hydride is not.   This molecule has three vertical mirror symmetry planes and must therefore have 𝐶3𝑣 

symmetry.   Boric acid has a 3-fold axis and a strikingly obvious horizontal mirror plane and thus 

belongs to point group 𝐶3ℎ also of order 6.   Finally 18-crown-6 is a large (36 atom) molecule but, 

looking at its manipulatable image on the Otterbein site, a clear 3-fold axis is visible.   If this is a 

subgroup of a non-rotational group the larger group must be 𝑆6, 𝐶3ℎ or 𝐶3𝑣.   No horizontal or vertical 

mirror is present, leaving the centrosymmetric 𝑆6 point group as the only remaining possibility and 

some manipulation of the Otterbein image might convince a viewer that this is indeed the case.  

 


