Schoenflies and Mulliken Notations

At the end of the 19th century Arthur Schoenflies developed the point group system shown in the table below to describe the external morphology of crystals. Crystallographers long ago abandoned this system in favour of the international (herman-maguin) approach but molecular scientists continue to use it. To find the equivalent point group in generator notation just compare the Schoneflies symbol with the generator symbol in the same position of the table.

ronne gro	ups in three a	imensi	0115 - 50	choem	lles
Partition	System	G	Ċ	ā Gi	
[1,1,1]	Triclinic	<i>C</i> ₁			C _i
	Monoclinic	<i>C</i> ₂		C_s	C_{2h}
	Orthogonal	D_2	C_{2v}		D_{2h}
[2,1]	Trigonal	<i>C</i> ₃			<i>S</i> ₆
		D_3	C_{3v}		D_{3d}
	Tetragonal	C_4		S_4	C_{4h}
		D_4	C_{4v}	D_{2d}	D_{4h}
	Pentagonal	C_5			S_{10}
		D_5	C_{5v}		D_{5d}
	Hexagonal	<i>C</i> ₆		C_{3h}	C_{6h}
		D_6	C_{6v}	D_{3h}	D_{6h}
	Heptagonal	<i>C</i> ₇			S_{14}
		D_7	C_{7v}		D_{7d}
	Octagonal	<i>C</i> ₈		S_8	C_{8h}
		D_8	C_{8v}	D_{4d}	D_{8h}
	Infinity	\mathcal{C}_{∞}			$C_{\infty h}$
		D_{∞}	$C_{\infty v}$		$D_{\infty h}$
[3]	Tetrahedral	Т			T_h
	Octahedral	0		T_d	O_h
	Icosahedral	Ι			I _h

Point groups in three dimensions - Schoenflies

Irreducible representations in Mulliken notation

Mulliken notation for irreducible representations is closely associated with the Schoenflies notation for groups. For example, \bar{n} and $\bar{n}2$ when n/2 is an odd number have a peculiar standard Mulliken notation that includes primes (' and ''). These groups are labeled C_{nh} and D_{nh} except for the special monoclinic case

Monoclinic $\overline{2}$	Schoneflies (C_s)
Α	A'
В	$A^{\prime\prime}$
Hexagonal 62	Schoneflies (C_{3h}/D_{3h})
A_1	A_1'
A_2	A_2'
B_1	$A_1^{-\prime\prime}$
B_2	$A_2^{\prime\prime}$
E_1	$E^{\prime\prime}$
E_2	E'
Dodecagonal $\overline{1}$	$\overline{02}$ Schoneflies (C_{5h}/D

Dodecagonal $\overline{10}2$	Schoneflies (C_{5h}/D_{5h})		
A_1	A_1'		
A_2	A_2'		
B_1	$A_1^{\prime\prime}$		
B_2	$A_2^{\prime\prime}$		
E_1	$E_1^{\prime\prime}$		
E_2	E_2'		
$\overline{E_3}$	$E_{2}^{-''}$		
E_4	$\bar{E_1}'$		

In groups \bar{n} and $\bar{n}2$ when n/2 is an even number all of the 2D irrep subscripts are reversed relative to the rotational group. Cyclic groups \bar{n} are Schoneflies S_n while $\bar{n}2$ are $D_{(n/2)d}$. $\bar{4}$ is no problem because there is only one 2D irrep.

Octagonal 82	Schoneflies S_8		
<i>A</i> ₁	A_1		
A_2	A_2		
B_1	B_1		
B_2	B_2		
E_1	E_3		
E_2	E_2		
E_3	E_1		

Higher order groups follow the same complicated pattern